
Vision-Guided Autonomous Stair Climbing

Yalin Xiong Larry Matthies

Machine Vision Group

Jet Propulsion Laboratory

Pasadena, CA 91109

Abstract

The Tactical Mobile Robot (TMR) program calls
for autonomous mobility in an urban environment.
Among all man-made structures which pose as bar-
riers for a mobile robot, stairs are the most obvious
and ubiquitous structure an autonomous urban robot
needs to be able to handle.

The urban II chassis by IS Robotics provides a me-
chanically simple and elegant way to enable the stair-
climbing capability. This paper addresses the issue of
using computer vision techniques to control the vehicle
automatically when climbing stairs. The algorithm is
based on detecting stair edges from a monocular se-
quence. It is shown that the position and orientation
of the stair edges can be used to compute the 3D orien-
tation and position of the vehicle relative to the stairs.
Robust estimation of those parameters is the key to re-
liable performance. A combination of techniques such
as median �ltering, histogram peak �nding, outlier re-
jection and weighted average are shown to be e�ective
in practice. At the end, we briey explain our work-
in-progress on automatic corner-turning in climbing
multiple ights of stairs.

1 Introduction

The urban environment poses a great challenge to au-

tonomous mobile robots. From the mobility point of

view, many man-made structures such as curb or stair

are di�cult for small robot to overcome. The main ob-

jective of the Tactical Mobile Robot (TMR) program

is to enable small packable robots to move e�ectively

in an urban environment. One of the �rst new issues

is to climb stairs automatically.

The urban II chassis by IS Robotics ([4]) provides

a simple mechanism to climb stairs and curbs. Fig-

ure 1 shows the overall mechanical design of the vehi-

cle. The vehicle has two main tracks along its body.

Those two tracks are used for driving and steering. In

Figure 1: Urban II Vehicle

Figure 2: Mounting and Climbing Stairs

the front of the vehicle, there are two articulated arms

with tracks as well. The vehicle uses the two arms to

mount a stair. When the vehicle is on the stairs, the

arms are straightened out to provide more stable sup-

port. Figure 2 illustrates the mechanism in which the

vehicle mounts and climbs the stairs.

In order for the vehicle to climb the stairs automat-

ically, two critical parameters must be estimated ro-

bustly and continuously during the climbing: the an-

gle between the stair orientation and vehicle heading

direction, and the position of the vehicle on the stairs

with respect to the center of stairs, i.e., whether the

vehicle is too close to the left or right boundary of

the stairs. For the convenience of illustration, we refer

to the �rst parameter as the \o�set angle", and the



Figure 3: Stair Edges

second parameter as the \o�set position".

We demonstrate that both parameters can be esti-

mated from stair edges detected in a 2D image. Stair

edges are de�ned as those 3D lines parallel to steps.

Figure 3 shows the edges of a ight of stairs in grey

lines. In 3D, they are parallel with each other, though

they do not belong to one single plane because of the

zigzag pro�le of typical stairs. In the next section, we

will illustrate that, if we assume that the vehicle body

is approximately parallel to the 3D stair edges, we can

compute the o�set angle and the o�set position in a

closed-form solution without any 3D information.

Thus it is critical to detect those stair edges robustly.

Unfortunately stairs come in di�erent styles, di�erent

contrasts, and di�erent materials. To make the sit-

uation worse, outdoor stairs frequently have shadows

cast onto them. All of these conditions complicate the

detection of stair edges signi�cantly. It is our belief

that the stair edge detection has to be specialized to

robustly extract near-parallel edges. In our implemen-

tation, we take a minimum commitment approach to

start with a paranoid edge detector, which detect a

large number of potential candidates. We then �lter

those candidate edges through histogram peak �nd-

ing, median �ltering, outlier rejection, and aggressive

edge linking.

To extend the current capability to climbing multiple

ights of stairs, the vehicle needs to go around the cor-

ner automatically and mount the next ight. We will

briey describe three strategies from simple scripting

to complicated target recognition/tracking. The work

on this is in progress. The experimental results we

show are done by scripting.

2 Stair-Climbing Algorithm

Stairs such as in Figure 4 can be very di�erent in ap-

pearance. The objective is to extract from the monoc-

ular images the o�set angle and the o�set position

parameters robustly. We present in this section an

algorithm based on detecting stair edges and extract-

Figure 4: Appearance of Stairs in Real World

Figure 5: Thinning of Edge Pixels

ing o�set parameters from the stair edges. The stair-

climbing algorithm is broken down into three steps:

1. Edge detection and linking to extract stair edges.

This subsystem must deal with all the variance of

appearance of stairs, and be able to extract valid

stair edges under most lighting conditions.

2. Recovery of o�set parameters: From a set of stair

edges, compute the o�set angle and o�set posi-

tion. This subsystem must be robust against out-

liers since the edge detection and linking will not

be perfect.

3. Steering of the vehicle: Steering the vehicle ac-

cording to the o�set parameters.

The following subsections explain in detail each of the

steps.

2.1 Edge Detection and Linking

Generic edge detector ([2, 1]) will not work very well

on stair images such as Figure 4. When the stair is

under shadow or stair edges are rough, we only get

broken edges from which it is hard to extract any use-

ful information. Instead, we take a least-commitment

approach in the initial edgel detection by ommiting

the threholding entirely. This will preserve potential

stair edges under shadow or when the stair has low

contrast. Figure 5 shows the thinned edge pixels.

Such a approach will potentially generate hundreds

of edges or more, therefore increasing the di�culties



in �ltering out spurious ones. Our argument is that

�ltering out spurious ones is always better than pre-

maturely rejecting real stair edges. In addition, com-

paring to the generic edge detectors, we do have some

more constraints that improve �ltering:

� Stair edges are straight lines.

� Stair edges are close to parallel to each other and

close to be horizontal.

� Multiple stair edges nearby can be merged into a

single one.

� Stair edges are long.

The edge detection and linking algorithm �lter out

spurious edges by sequentially applying the above four

constraints:

1. Straight line constraint: When linking neigh-

boring edge pixels into an edge, we run a line-

parameter estimator to examine whether the

new pixel is collinear with the existing edges.

This constraint guarantee that all the edges are

straight lines.

2. Dominant orientation constraint: For all straight

edges found so far, compile a histogram of number

of edge pixels against their orientations. Choose

the peak orientation within [-45, 45] degrees from

the horizontal orientation. Eliminate all other

edges that are too far from the peak orienta-

tion. Note that parallel 3D lines are usually not

mapped into parallel 2D lines, but in general, the

orientations will not vary much.

3. Linking multiple edges: It is inevitable that some

stair edges will be broken due to shadow or other

reasons. This step links those collinear small

edges into one single long edge.

4. Length of stair edges: After all above �ltering, the

short edges are eliminated. The threshold used

was 1/4 of image width.

The �rst and third step in the above procedure are

worth more elaborations. In enforcing the straight

line constraint during edge tracking, we repeatedly es-

timate the parameters of a �tted line every time a

new pixel is added, and when distance between the

next edge pixel and the �tted line exceeds a limit, the

edge tracking stops in that direction. Figure 6 shows

the results after tracking straight lines and applying

the dominant orientation constraint. Though the re-

sults from the edge tracking are sensitive to starting

Figure 6: Tracking Straight Lines

Edge Segments

Least Square Partial Least Square

Figure 7: Partial Least Square for Edge Linking

edgels, the subsequent aggressive edge linking makes

them less sensitive.

When linking two edges that have the same orienta-

tion but are slightly shifted vertically, the least square

�tting does not make any sense because the slight ver-

tical shift will cause the orientation of the merged line

to be o�. Instead, we perform a partial least square

�tting by adjusting only the position parameter while

keep orientation parameter the same. Figure 7 shows

the di�erence between a general least square �tting

and our partial least square �tting. This situation oc-

curs frequently when there are several parallel lines in

close distance on the stair steps, and only a portion of

each of the lines is detected.

Mathematically, let us assume the ith straight edge

has the following statistical parameters: N i, Si

x
, Si

y
,

Si

xx
, Si

xy
and Si

yy
, where N i is the number of pixels

of the edge, Si

x
is the sum of all x coordinate of the

pixels, so on as in [3]. If we represent the �tted line

by the equation y = kix+ bi, then by the least square

method:

ki =
N iSi

xy
� Si

x
Si

y

N iSi
xx
� (Si

x
)2
; (1)

bi =
Si

xx
Si

y
� Si

x
Si

xy

N iSi
xx
� (Si

x
)2
; (2)

and the average square residue is

ri(ki; bi) = (Si

yy
+ (ki)2Si

xx
+N i(bi)2;



�2kiSi

xy
� 2biSi

y
+ 2bikiSi

x
)=N i:(3)

When merging two edges with almost identical slope,

for example edge ith and j th, we estimate the slope

by a simple weighted average:

kij = (kiN i + kjN j)=(N i + N j); (4)

and the position parameter is �tted by least square:

bij = (Si

y
+ Sj

y
� kij(Si

x
+ Sj

x
))=(N i +N j); (5)

and the average square residue after the merging is:

rij = (N iri(kij; bij)+N jrj(kij; bij))=(N i+N j): (6)

The edge linking algorithm has the following steps:

1. Sort the list of straight lines by their length in

descending order. Denote the list as L.

2. For each line i, �nd the set of lines Li whose mem-

ber are parallel to line i.

3. Sort the list Li according to the distance between

the member and line i in ascending order. The

distance is in the direction normal to the line ori-

entation. Eliminate those elements with large dis-

tance from list Li.

4. Sort the list Li according to the gap between the

member and line i in ascending order. The gap is

in the direction of the line orientation.

5. Try to merge line i with each member j of the list

Li:

(a) If the gap between line i and j is too large,

continue.

(b) Compute the kij, bij and rij.

(c) If the residue rij larger than a threshold,

continue;

(d) Replace line i by the merged line and delete

line j from list L.

6. If the length of the merged line i is less than a

threshold, reject it. Otherwise, add the line to a

list of stair edges E. goto step 2.

Figure 8 shows the stair edges after all the �ltering

and linking.

Figure 8: Merged Straight Edges

θ
z

d

h

X

Z

Y

Y

Camera

Stair Edge

Camera

Stair Edge

Figure 9: Mapping 3D Stair Edges onto Images

2.2 Robust Recovery of O�set Param-

eters

In order to describe the extraction of o�set param-

eters, let us take a look at how a 3D stair edge is

projected onto the image. Suppose there is a 3D stair

edge, and a camera is looking at the edge at an o�set

angle of �. The distance between the camera and the

edge is z, the height of the stair edge is h, and point

location in the edge is represented by d as in Figure 9.

Without loss of generality, we also assume the focal

length of the camera is 1. Then the projective map-

ping of any 3D point on the line onto the camera image

plane can be represented by a homogeneous transform:

2
4

X

Y

Z

3
5 =

2
4

1 x0 0

0 y0 �1

0 1 0

3
5
2
4

c� �s� 0

s� c� 0

0 0 1

3
5
2
4

d

z

h

3
5

(7)

where s� = sin(�), c� = cos(�) and x0 and y0 are the

projection center of the image plane.

In the 2D image plane, the mapped location of any

point on the edge is

x =
X

Z
= x0 +

dc� � zs�

ds� + zc�
; (8)

y =
Y

Z
= y0 �

h

ds� + zc�
: (9)

By eliminating variable d from the above two equa-

tions, we then obtain the equation for a 2D straight

line which is the image of the 3D stair edge:

y � y0 =
hs�

z
(x� x0) �

hc�

z
: (10)



This equation directly relates the parameters of 2D

and 3D stair edges.

If we have already detected the stair edge in the im-

age, we can intersect the edge with the image center

column x = x0, we then have

ym � y0 = �

hc�

z
; (11)

where ym is the Y-coordinate of the intersection point,

and the slope of the 2D stair edge measured from the

image should satisfy the following constraint:

k =
hs�

z
: (12)

From the above two equations we have

� = atan(�k=(ym � y0)); (13)

which elegantly states the relationship among the o�-

set angle and the line position and orientation.

From Eq. 8, the distance d as a function of the x-

coordinate in image can be represented as

d(x) = z
(x� x0) + tan(�)

1� (x� x0) tan(�)
: (14)

Without knowing the distance z (scale parameter), it

is impossible to estimate the horizontal distance d(x).

But we can estimate the ratio between the distance to

the left and right endpoints of the stair edge using the

above equation, i.e.

q = d(xl)=d(xr); (15)

where xl and xr are the x-coordinate of the left and

right endpoints respectively. This ratio q will be used

to steer the vehicle to the center of the stairs.

Considering the special case when h = 0, Eq. 10 states

that the 2D edges are always at the same orienta-

tion (horizontal) regardless of the o�set angle. An-

other way to look at this singularity issue is that, from

Eq. 13, it is obvious that when ym is near to the image

center y0, the estimation of the o�set angle is numer-

ically unstable. In practice, for any candidate stair

edge, if its ym is near the the image center, it is not

used for estimating the o�set angle though it can be

used to estimate the ratio q once the o�set angle is

computed from other stair edges.

Though Eq. 13 and 15 establish a simple way to esti-

mate the o�set parameters, we still need address the

issue of robustness given that there will be outliers in

the stair edges. We rely mostly on median �ltering to

reject outliers:

Figure 10: The Final Set of Stair Edges

1. Compute q and � from every stair edge.

2. Reject those edges whose q values are incorrect,

e.g. the left and right endpoints are on the same

side of the vehicle.

3. Compute the median of � by sorting the valid �

values.

4. Reject those edges whose � values are far from the

median.

5. Weight average � values. The weights are propor-

tional to 1=(ym � y0).

6. Recompute q for every edge using the averaged �.

Choose the median of all q values to be the o�set

position ratio.

Figure 10 shows the �nal set of stair edges after the

above procedure.

The main assumption under which Eq. 13 and 15 hold

valid is that the plane de�ned by the nodal point and

the center scanline in the image is parallel to all the

stair edges. When the vehicle is on the stairs, the

vehicle body plane is approximately parallel to all the

stair edges. Therefore, we can \rectify" the raw image

so that the assumption is satis�ed. In case where the

vehicle body rolls with respect to the stair edges, those

equations hold approximately true as long as the roll

angle is not signi�cant. If vehicle roll angle can be

independently estimated, the roll angle can also be

compensated, though in practice it is rarely an issue.

2.3 Steering of Vehicle on Stairs

The steering of the vehicle is determined by two cri-

terions:

� Alignment: The vehicle needs to be aligned with

the stairs in orientation. The objective is to servo

the steering so that the o�set angle � is small in

magnitude.



� Centering: The vehicle needs to stay close to be

center of the stairs. The objective is to servo the

steering so that the o�set position ratio q is close

to 1.

For both criterions, we use a simple linear mapping

from the deviations to the steering angles. The �nal

steering angle is a weighted average of the two.

The alignment criterion has higher priority than the

centering criterion. Therefore, when the o�set angle

has large magnitude, the vehicle is steered purely by

the �rst criterion in order to avoid catastrophic failure.

The centering criterion is to provide a better safety

bu�er, and is taken into consideration only after the

vehicle is basically aligned with the stair.

Another reason the centering criterion is given less

consideration is that the accuracy of q is limited by

factors such as the �eld of view of the camera (edges

clipped), relatively inaccurate endpoint position of the

detected edges, and so on. In practice, we also enforce

a temporal consistency checking on q values.

3 Corner-Turning for Multiple

Flights of Stairs

In order for the vehicle to climb multiple ights of

stairs, it needs to navigate around the landing corner,

and align with the next ight of stairs. This is more of

a general navigation issue, whose solution ranges from

simple scripting to elaborate target recognition and

tracking. Here are three approaches with increasing

sophistication and di�culties:

� Scripted Navigation:If the physical dimension of

the landing corner is known, once the vehicle

lands, it can go through a scripted sequence of

motions to get around the corner. It is the sim-

plest approach but requires apriori knowledge of
the particular stairwell.

� Wall Following: After the vehicle lands, it can fol-

low the boundary (wall) of the landing corner us-

ing 3D sensors such as stereo or laser range�nder.

It is a more general approach than the scripted

navigation, but it can not handle stairwells with

extra exits.

� Target Recognition/Tracking: After the vehicle

lands, it can pan the sensor around to locate

where the next ight of stair is, plan the path and

avoid obstacle when navigating toward it. This is

the most general and di�cult approach.

Figure 11: Climbing Two Flights of Stairs

Figure 12: Climbing Stairs Under Shadow

4 Experiments

We conducted extensive testing of stair climbing un-

der various lighting and shadow conditions on various

types of stairs. The overall system robustness is sat-

isfactory. The following two sequences of images were

shot when the vehicle was climbing a multiple ights

of narrow and steep �re-escape stairs with the self-

casting shadow.

Acknowledgments

The authors would like to thank the entire hardwork-

ing team of BAA 97-20 to make this work possible.

References

[1] Dana Ballard and Christopher Brown. Computer Vi-

sion. Prentice-Hall Inc., 1982.

[2] J. Canny. A computational approach to edge detection.

IEEE Trans. PAMI, 8(6):679{697, November 1986.

[3] William H. Press, Brian P. Flannery, Saul A. Teukol-

sky, and William T. Vetterling. Numerical Recipes in

C. Cambridge University Press, 1988.

[4] IS Robotics. http://www.isr.com/research/urban.html.
1999.


